Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation.
نویسندگان
چکیده
Boron-doped titanium dioxide (B-TiO2) films were deposited by atmospheric pressure chemical vapour deposition of titanium(iv) chloride, ethyl acetate and tri-isopropyl borate on steel and fluorine-doped-tin oxide substrates at 500, 550 and 600 °C, respectively. The films were characterised using powder X-ray diffraction (PXRD), which showed anatase phase TiO2 at lower deposition temperatures (500 and 550 °C) and rutile at higher deposition temperatures (600 °C). X-ray photoelectron spectroscopy (XPS) showed a dopant level of 0.9 at% B in an O-substitutional position. The ability of the films to reduce water was tested in a sacrificial system using 365 nm UV light with an irradiance of 2 mW cm(-2). Hydrogen production rates of B-TiO2 at 24 μL cm(-2) h(-1) far exceeded undoped TiO2 at 2.6 μL cm(-2) h(-1). The B-TiO2 samples were also shown to be active for water oxidation in a sacrificial solution. Photocurrent density tests also revealed that B-doped samples performed better, with an earlier onset of photocurrent.
منابع مشابه
Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity
The Atmospheric Pressure Chemical Vapor Synthesis (APCVS) route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the am...
متن کاملVisible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition
Nitrogen-doped TiO2 nanoparticles were synthesized via plasma assisted metal organic chemical vapor deposition. Nitrogen dopant concentration was varied from 0 to 1.61 at. %. The effect of nitrogen ion doping on visible light photocatalysis has been investigated. Samples were analyzed by various analytical techniques such as x-ray diffraction, transmission electron microscopy, x-ray photoelectr...
متن کاملCombinatorial Atmospheric Pressure Chemical Vapour Deposition for Optimising the Functional Properties of Titania Thin-Films
Titanium dioxide (TiO2) is the leading material for self-cleaning applications due to its chemical inertness, mechanical robustness, durability to extended photocatalytic cycling, low cost and high photocatalytic activity. There has been a concerted effort to try and improve the material’s functional properties through impurity doping; altering the band structure and electronic transport proper...
متن کاملHighly Porous Nanocluster TiO2 Films Deposited using APCVD in an Excess of Water Vapour
This paper describes high porosity titanium dioxide (TiO2) films deposited via atmospheric pressure chemical vapour deposition (APCVD) using tetraisopropyl titanate at deposition temperatures (Tdep) of 250C and 450C in excess water vapour. Films deposited at low Tdep exhibit a very low refractive index (nfilm) and high porosity (), up to 87% of the bulk rutile phase. High-temperature sinteri...
متن کاملTungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition
Tungsten doped titanium dioxide films with both transparent conducting oxide (TCO) and photocatalytic properties were produced via aerosol-assisted chemical vapor deposition of titanium ethoxide and dopant concentrations of tungsten ethoxide at 500 °C from a toluene solution. The films were anatase TiO2, with good n-type electrical conductivities as determined via Hall effect measurements. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 39 شماره
صفحات -
تاریخ انتشار 2013